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Abstract. We derive a formula for the quantum corrections to the electrical current for a metal out of
equilibrium. In the limit of linear current-voltage characteristics our formula reproduces the well known
Altshuler-Aronov correction to the conductivity of a disordered metal. The current formula is obtained by a
direct diagrammatic approach, and is shown to agree with what is obtained within the Keldysh formulation
of the non-linear sigma model. As an application we calculate the current of a mesoscopic wire. We find a
current-voltage characteristics that scales with eV/kT , and calculate the different scaling curves for a wire
in the hot-electron regime and in the regime of full non-equilibrium.

PACS. 72.10.-d Theory of electronic transport; scattering mechanisms – 72.15.Rn Localization effects
(Anderson or weak localization)

1 Introduction

Quantum interference effects in disordered metals have
been the subject of intensive investigation for over twenty
years. For general reviews see [1–3]. The interference of
the scattered electrical waves in the presence of a random
potential leads to corrections [4–6] to the semi-classical
formula of the electrical conductivity known from the
Drude-Boltzmann theory. The physical implications of
these quantum corrections have been extensively discussed
in the literature mostly for the equilibrium properties, for
which experimental data were available, although a num-
ber of non-linear electric field effects have been predicted
in the past [2,7–10].

In contrast, non-equilibrium electrical transport has
received considerable attention in the field of mesoscopic
physics. Examples are the transport in quantum dots [11],
or the shot noise in mesoscopic conductors [12]. In this
situation however the majority of the studied phenomena
did not involve interference effects.

Our interest in the non-equilibrium properties of in-
terference phenomena originated by the suggestion [13]
that the non-equilibrium electric noise could be the ori-
gin for the low temperature saturation of the weak lo-
calization dephasing time observed in disordered films
and wires [14]. Mohanty et al. [15] pointed out that in
the samples with the strongest dephasing rate also the
interaction correction (Altshuler-Aronov) to the conduc-
tivity saturates at low temperature. This suggests that
also the Altshuler-Aronov correction should be affected by
the non-equilibrium noise. Similar speculations concerning
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an electric field effect on the Altshuler-Aronov correction
have also been made earlier by different authors in differ-
ent contexts [16,17].

This motivated us to study the interaction correction
in the presence of an external field. In analogy to the anal-
ysis performed in the literature for weak localization [2],
we calculated the interaction correction to the current in
the presence of a time dependent vector potential, assum-
ing a thermal distribution function [18]. Indeed we verified
the above-mentioned speculations since we found an elec-
tric field effect. However, contrary to what is known in
the case of weak localization, where the strongest effect
occurs when the period of the AC field is of the order
of the dephasing time, we found a suppression of the in-
teraction correction even by static electric fields. These
findings have however raised the issues of the possibility
of experimentally observing the effect and of its physical
interpretation. Both these questions will be addressed in
this paper.

Let us comment first the problem concerning the inter-
pretation of the effect. In reference [19] we demonstrated
that the non-linear field effect can be understood in terms
of dephasing by calculating the phase shifts of the relevant
classical paths in the presence of a time dependent vector
potential. On the other hand, a static electric field can
also be described in terms of a static scalar potential, and
it is clear that a static scalar potential does not lead to
dephasing. Therefore we think it is of interest to present a
version of our theory in the scalar gauge. In this paper we
will explicitly show the gauge invariance of our previous
results.

The second problem concerns the scale of the effect and
its experimental observability. We found in reference [18]
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that the temperature-dependent Altshuler-Aronov correc-
tion to the conductivity saturates when the voltage drop
on the thermal length (LT =

√
D/T ) is comparable to the

temperature eELT ∼ kT . From this condition one can es-
timate the strength of the microwave field that is necessary
to explain the saturation of the Altshuler-Aronov correc-
tion observed in the experimental data of reference [15]. In
so doing one arrives at a microwave field value that is more
than an order of magnitude larger than the optimistic es-
timate given in reference [13] to explain the saturation of
the weak localization time. Furthermore it is rather un-
likely that the condition eELT ∼ kT can be reached at
low temperature, since strong heating is already assumed
to set in when the voltage drop over the electron-phonon
length is of order of the temperature. Whether the exper-
imentally observed saturation of the resistance [15] is due
to heating or not is hard to decide since the electron tem-
perature has not been measured directly. Similar problems
arise also in the attempt to explain the experimental data
of references [16,17].

Despite the above mentioned problems, we think we
cannot rule out non-equilibrium noise as a reason for the
observed saturations. In fact, even in the absence of strong
heating, the distribution function may deviate from the
equilibrium form and affect the interaction correction to
the conductivity and possibly lead to saturation at consid-
erably weaker electric fields. A theory which is valid even
out of equilibrium will be developed in this paper.

In contrast to our previous work [18] we will avoid to
guess the distribution function which could be relevant
for the experiments of references [14,15]. Instead we will
calculate the interaction correction in a more controlled
situation. Nowadays it is, indeed, possible to create non-
equilibrium in a controlled way by, for instance, attaching
a short mesoscopic wire to large metallic reservoirs (see
e.g. [20]). In the absence of inelastic scattering processes
the distribution function in the wire is a linear superposi-
tion of the distribution functions of the leads [21], at least
when only the ensemble averaged distribution function is
considered as it is the case here, see also reference [22] for
comparison. The interaction correction in such a situation
has also been considered by Nagaev [10] at zero tempera-
ture and in the recent paper by Gutman and Gefen [23] for
finite temperature. We restrict ourselves to nonzero tem-
perature where we verify the result that the I − V char-
acteristics scales as eV/kT . Going beyond the analysis by
Gutman and Gefen, we calculate the I−V characteristics
explicitly and we will compare quantitatively the wire in
non-equilibrium with the wire in the hot electron regime.
In addition we will also discuss the interaction correction
in the spin triplet channels.

Our paper is organized as follows. In the next section
we introduce the basic quantities and recall the main re-
sults of the Drude-Boltzmann theory within the Keldysh
formalism. In Section 3 we consider the quantum correc-
tions to the conductivity within the Keldysh diagram-
matic approach. We derive, in particular, an expression
for the current in the presence of an external electric field.
In Section 4 we discuss the gauge invariance of the the-

ory, while in Section 5 we present a specific application: a
mesoscopic wire. Finally in Section 6 we give our conclu-
sions. In the appendices we outline how to obtain the same
results using the Keldysh formulation of the non-linear
sigma model and we extend the calculations in order to
include also the spin effects.

2 Basic definitions and the Drude-Boltzmann
theory

In this section we will recall some basic relations of
the quasi-classical approximation in its non-equilibrium
(Keldysh) formulation [24]. Our notation will mainly fol-
low reference [25]. We will write down the equation of mo-
tion for the Green functions in the presence of impurity
scattering in the case when quantum interference is com-
pletely neglected. The Green functions have the matrix
structure

Ĝ =
(
GR GK

0 GA

)
, (1)

with

GR(x, x′) = −iΘ(t− t′)
(
〈Ψ(x)Ψ†(x′)+Ψ†(x′)Ψ(x)〉

)
(2)

GA(x, x′) = +iΘ(t′ − t)
(
〈Ψ(x)Ψ†(x′)+Ψ†(x′)Ψ(x)〉

)
(3)

GK(x, x′) = −i
(
〈Ψ(x)Ψ†(x′)−Ψ†(x′)Ψ(x)〉

)
, (4)

where Ψ and Ψ† are fermion operators and x = (x, t). In
equilibrium the Keldysh component of the Green function
is expressed in terms of the retarded and advanced com-
ponents by GK

ε = [1− 2f(ε)](GR
ε −GA

ε ), where f(ε) is the
Fermi function. The Keldysh component out of equilib-
rium will be discussed later.

The Green function solves the differential equation(
i
∂

∂t
+

1
2m

(∇+ ieA)2 + eφ+ µ

)
Ĝ(x, t; x′, t′)

−
∫

dt1dx1Σ̂(x, t; x1, t1)Ĝ(x1, t1; x′, t′) =

δ(x− x′)δ(t− t′), (5)

where φ and A are the scalar and the vector potential.
Since the self-energy Σ̂ has the same triangular matrix
structure as the Green function, one can invert the inverse
Green function Ĝ−1 and finds for the Keldysh component
the relation

GK = GRΣKGA. (6)

For a graphical representation see Figure 1. We then in-
troduce the ξ-integrated (quasi-classical) Green function

ĝtt′(p̂,R) =
i
π

∫
dξdre−ip·rĜ

(
R +

r
2
, t; R− r

2
, t′
)
,

(7)
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Fig. 1. Graphical representation of the Green function; the
shaded box in GK represents the Keldysh component of the
self-energy, i.e., basically the distribution function.

where ξ = p2/2m − µ and p̂ is a unit vector along the
momentum. The Green function in the energy domain is

ĝεε′(p̂,x) =
∫

dtdt′eiεt−iε′t′ ĝtt′(p̂,x). (8)

We will keep the notation of small g for the ξ-integrated
Green functions and capitalG for the not integrated Green
functions all over this paper. When approximating the
density of states as an energy independent constant, the
ξ-integration is related to an integration over the momen-
tum p according to∫

d3p

(2π)3
→ N0

∫
dξ
∫

dp̂
4π
· (9)

We will now recall some relations that are specific for
impurity scattering. By treating the impurity scattering
within the self-consistent Born approximation and assum-
ing a Gaussian, δ-correlated impurity potential with

〈U(x)U(x′)〉 =
1

2πN0τ
δ(x− x′), (10)

the electron self-energy is local in space and is given by

Σ̂imp(x, t; x′, t′) =
1

2πN0τ
Ĝ(x, t; x, t′)δ(x− x′) (11)

= Σ̂imp
tt′ (x)δ(x− x′). (12)

Notice that this equation has to be solved self-consistently
for all the components of the Green function. Using the
above definition, one observes that the impurity self-
energy is related to the s-wave part of the quasi-classical
function,

Σ̂imp
tt′ (x) = − i

2τ

∫
dp̂
4π
ĝtt′(p̂,x). (13)

The distribution function out of equilibrium is found
by solving the appropriate kinetic equation. Here we
derive the kinetic equation for gK

εε′ from equations (6)
and (7). For simplicity we neglect external fields for the
time being. Under these conditions the retarded and ad-
vanced Green functions are

GR(A)(p, ε) =
1

ε− ξ ± i/2τ
· (14)

Near the Fermi energy (ε, ε′ � εF) and for small momenta
(q � pF) one finds

gK
εε′(p̂,q) =

i
π

∫
dξGR(ε,p + q/2)

×ΣK
εε′(q)GA(ε′,p− q/2) (15)

≈ i
τ

1
ε− ε′ + i/τ − vFp̂ · q

∫
dp̂
4π
gK
εε′(p̂,q). (16)

The equation above reproduces the well-known kinetic
equation for impurity scattering(
∂

∂t
+

∂

∂t′
+ vFp̂ · ∇

)
gK
tt′(p̂,x) =

1
τ

(
gK
tt′(p̂,x)−

∫
dp̂
4π
gK
tt′(p̂,x)

)
. (17)

In this work we will restrict to the case, where energies
and momenta are restricted even more, namely ετ, ε′τ ,
qvFτ � 1. By expanding (16) for small energy and mo-
mentum and taking the angular average, one finds the
diffusive equation(

∂

∂t
+

∂

∂t′
−D ∂2

∂x2

)∫
dp̂
4π
gK
tt′(p̂,x) = 0, (18)

where the diffusion constant is D = v2
Fτ/3. Notice that

this equation is solved by any function gK
tt′(p,x) which

is independent of position x and which depends on time
differences (t− t′) only. This reflects the fact that any dis-
tribution function is allowed for noninteracting electrons.

The charge density and current density are related to
the Keldysh component of the Green function,

ρ(x, t)=ieGK(x, t; x, t) (19)

j(x, t)=
e

2m
[∇x−∇x′+2ieA(x, t)]GK(x, t; x′, t)|x′=x.

(20)

In terms of the quasi-classical Green functions, the charge
and current read [25]

ρ(x, t) = 2eN0

(
π

2

∫
dp̂
4π
gK
tt(p̂,x) − eφ(x, t)

)
(21)

j(x, t) = eπN0

∫
dp̂
4π
vFp̂gK

tt(p̂,x). (22)

It is useful to consider the current density in the pres-
ence of an electric field E(x) = −∇φ(x). By replacing GK

in (20) with GRΣKGA we express the current density as

j(q, ω) = ie
∫

dε
2π

∫
d3p

(2π)3

p
m
GR
(
ε+

ω

2
,p +

q
2

)
×ΣK

ε+ω/2,ε−ω/2(q)GA
(
ε− ω

2
,p− q

2

)
, (23)

from which we obtain

j(x, t) = −eπDN0∇
∫

dp̂
4π
gK
tt(p̂,x) (24)

= −D∇ρ(x, t) + 2e2DN0E(x, t). (25)
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Within the adopted approximations, i.e., a constant den-
sity of states and a uniform diffusion coefficient, one ob-
serves that the current is a linear function of the electric
field as long as the charge density ρ(x) stays uniform.

We close this section by commenting on equation (21).
A scalar field φ(x, t) shifts the entire Fermi surface, i.e., it
affects the Green function at all energies. This is lost in the
naive substitution of equation (9), when the ξ-integration
is extended to ±∞. The second term in equation (21) is
obtained by taking into account these high energy terms
correctly. The equilibrium response to a static field is, for
instance, fully given by this second contribution. For this
reason the second term is often referred to as the “static
contribution” to the response, whereas the first term is
referred to as the “dynamic contribution”.

3 Quantum correction to the current

Quantum interference gives rise to corrections to the
semi-classical expression of the electrical conductivity of
a metal. The so-called quantum corrections to the av-
erage conductivity are the weak localization correction
(WL), the interaction correction in the particle-hole chan-
nel (EEI), and the interaction correction in the Cooper
channel (EEIC). In this paper we will concentrate on
the interaction correction in the particle-hole channel. For
non-linear effects in WL we refer to the literature [2,3].
Interactions in the Cooper channel will not be considered.
This is justified for non-super-conducting materials since
in that situation the relevant interaction parameter scales
downwards under the renormalization group.

3.1 Ladder diagrams

Before calculating the quantum corrections we introduce
the ladder diagrams of repeated impurity scattering which
will appear at various places in the diagrammatic ap-
proach. Technically speaking these ladder diagrams ap-
pear when averaging a product of a retarded and an ad-
vanced Green function. Here we briefly recall how to derive
the expressions for the ladder in the absence of external
fields and without spin effects. The inclusion of external
fields and spin structure is straightforward and one may
refers to the reviews on the subject like reference [2].

The diffuson D(q, ω) or particle-hole ladder is found
by summing the sequence of diagrams shown in Figure 2:

D(q, ω) = 1 + ηRA + (ηRA)2 + · · · = 1
1− ηRA

(26)

with

ηRA =
1

2πN0τ

∫
d3p

(2π)3
GR(ε+ ω,p + q)GA(ε,p)(27)

≈ 1− τ(−iω +Dq2) (28)

where we have used the condition that ωτ � 1
and vFqτ � 1 so that the diffuson reads

D(q, ω) =
1
τ

1
−iω +Dq2

· (29)

GR
�+!

p + q p
0
+ q

p
0p

GR
�+!GR

�+!

GA
� GA

�GA
�

Fig. 2. Graphical definition of the diffuson (particle-hole lad-
der). GR and GA are the retarded and advanced Green func-
tions, which in the general case can depend on external elec-
tromagnetic fields.
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GA
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Fig. 3. The diffuson in the space/time domain.

For completeness we give the expression in the presence of
external electromagnetic fields. In this case it is convenient
to go a real space representation where the diffuson is
defined by the equation{

∂

∂t
−D(∇x + ieAD)2 − ieφD

}
Dη
tt′(x,x

′) =

1
τ
δ(x− x′)δ(t− t′), (30)

with AD = A(x, t+η/2)−A(x, t−η/2) and φD = φ(x, t+
η/2)− φ(x, t− η/2). In these equations t is the center-of-
mass time, and η is the relative time, and are defined in
Figure 3. Notice that the external field drops from the
equation for the diffuson when the relative time η equals
zero.

3.2 Interaction correction to the current

We are now ready to allow for electron-electron interac-
tions. Interactions will enter the kinetic equation and de-
termine the form of the distribution function. We assume
that the distribution function has been determined self-
consistently via the kinetic equation with the inclusion of
the interaction. We will concentrate then on the calcula-
tion of the interaction corrections to the current density.
To do so we need the expression for the Keldysh Green
function in the presence of interactions. Following refer-
ences [26,25] we start with the self-energy

Σ = Σimp +ΣV (31)

where Σimp is the previously defined impurity self-energy
and

ΣV
ij (x, x

′) = i
∑
i′j′kk′

∫
dx2dx3dx4dx5Γ

k
ii′(x5;x, x3)

×V kk′(x5, x4)Gi′j′(x3, x2)Γ̃ k
′

j′j(x4;x2, x
′).

(32)
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Fig. 4. The self-energy containing both disorder and
interaction.

+=

Fig. 5. Dressing of the interaction vertex with impurity lines.

The vertex functions are given by

Γ kij(x;x1, x2) = γkij +
1

2πN0τ

∑
i′j′

∫
dx′1dx′2Gii′(x1, x

′
1)

×Γ ki′j′(x;x′1, x
′
2)Gj′j(x′2, x2). (33)

An analogous equation is valid for Γ̃ . We recall that in the
Keldysh triangular representation the “absorption” and
“emission” vertices differ. A diagrammatic representation
of both the self-energy and vertex equations is shown in
Figures 4 and 5.

The indices i, j, . . . denote matrix indices in Keldysh
space. The bare vertices γ, γ̃ are local in space and time.
The structure in Keldysh space is γ1

ij = γ̃2
ij = δij/

√
2 and

γ2
ij = γ̃1

ij = σxij/
√

2. From Σimp + ΣV one may derive
a kinetic equation for the system with disorder and in-
teraction. The general expressions were already given in
the seminal paper, reference [26]. Explicit expressions for
the various components of Γ and Γ̃ in terms of integrals
like ηRA are also given in the appendix of reference [25].
Fully evaluating the expressions in this or that limit re-
mains still to be done. Even in thermal equilibrium we
are not aware of any full self-consistent calculation.

In the following we will take into account only the non-
interacting self-energy self-consistently, and restrict our-
selves to the perturbation theory for the interacting part
of the problem. The change in GK due to the interaction
may be written as

δGK = GRδΣRGK +GRδΣKGA +GKδΣAGA, (34)

where δΣ is a sum of the interaction self-energy plus the
interaction-induced change in the impurity self-energy

δΣ = δΣimp +ΣV . (35)

Among the many contributions to δΣ we start with the
Keldysh component of δΣimp. We denote the correspond-
ing correction to the current as δja, which we determine as

δja(x, t) = −ieD2πN0τ∇δΣimp,K . (36)

Apparently δja is related to the correction to the charge
density and may be written as

δja(x, t) = −eπDN0∇
∫

dp̂
4π
δgK
tt(p,x) (37)

= −D∇δρ(x). (38)
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Fig. 6. Interaction correction to the current; diagrams of the
type shown here correspond to δja and may be related to the
gradient of the density.
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Fig. 7. Interaction correction to the current; these diagrams
contribute to δjb.

Some typical diagrams contributing to δja are shown in
Figure 6. The calculation of the correction to the cur-
rent from all the other contributions, which we will denote
by δjb, simplifies due to the following observation: the ma-
jority of the components of the renormalized vertices Γ , Γ̃
are strongly enhanced over the bare value due to the pres-
ence of a diffusive type of vertex correction. The explicit
calculation [25] shows, however, that the diagonal parts
of Γ 1

ij and Γ̃ 2
ij are not renormalized. In the leading order

of a gradient expansion we can therefore neglect all the
terms involving these vertices. As a result the expression
for the various self-energy components are given by the
combinations [25]

ΣV,R : Γ 1
12G22Γ̃

1
21V

R (39)

ΣV,A : Γ 2
21G11Γ̃

2
12V

A (40)

ΣV,K : Γ 1
12G22Γ̃

1
22V

R + Γ 2
11G11Γ̃

2
12V

A (41)

and

δΣimp,R : GRΣV,RGR/(2πN0τ) (42)

δΣimp,A : GAΣV,AGA/(2πN0τ). (43)

A diagrammatic representation of the correction to the
current from ΣV,R and ΣV,A is shown in Figure 7. Going
through the algebra one convinces one-self that the con-
tributions from ΣV and δΣimp may be combined as

ΣV,R + δΣimp,R +ΣV,K
a (44)

ΣV,A + δΣimp,A +ΣV,K
b (45)

where ΣV,K
a and ΣV,K

b refer to the two terms entering
the expression for ΣV,K. These combinations of terms are
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Fig. 8. The three diagrams constituting the Hikami box;
within the here-applied formalism the diagrams are generated
from the self-energies δΣimp +ΣV .
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Fig. 9. Labeling of momenta and times in the Hikami box;
within the here-applied approximations the retarded and ad-
vanced Green functions are local in time.

taken into account in the diagrams of Figure 7 by com-
pleting the “Hikami box” as shown in Figure 8. We can
now proceed to the explicit calculation of the correction to
the current. Let us start with the evaluation of the Hikami
box. The first of the diagrams of the Hikami box is shown
in more detail in Figure 9. The evaluation of the diagram
amounts to the integration over the “fast” momentum en-
tering the electron Green function and is accomplished by

∫
d3p

(2π)3

p
m
GR(p + q/2)GA(p− q/2)

×GR(p− q/2 + q1)GA(p− q/2 + q1 −Q). (46)

The integration is performed under the assumption that
the three momenta q, q1, and Q are small compared to 1/l
and that the energy in all the four Green functions is small
compared to 1/τ . After expanding the Green functions
to first order in q, q1, Q, the integration over p gives
(−6πiN0τ

2)D(Q + q). Evaluating the other two diagrams
of Figure 8 analogously and summing up the three of them
one arrives at (−4πiN0τ

3)DQ.
After completing the evaluation of the Hikami box, we

now address our attention to the vertex functions Γ and Γ̃ .
From reference [25] we borrow the relevant expressions as

Γ 1
12 =

1√
2

(1− ηRA)−1(ηRK + ηKA) (47)

Γ̃ 1
21 =

1√
2

(1− ηAR)−1, (48)

so that Γ̃ 1
21 is simply a diffusion operator, as it is also man-

ifest in Figure 7. The explicit space and time dependence

���
���
���
���

���
���
���
���

p + q=2
Q

q + q1

Fig. 10. The interaction vertex; compare Figure 7.

is determined as

Γ̃ 1
21(x;x1, x2) =

1√
2
Dη=0
tt1 (x,x1)δ(x1 − x2)δ(t1 − t2).

(49)

The vertex Γ 1
12 has a more complicated structure due to

the presence of a Keldysh Green function in the kernel
of the corresponding integral equation. Its detailed dia-
grammatic representation is shown in Figure 10. The in-
tegral ηRK is given by

ηRK =
1

2πN0τ

∫
d3p

(2π)3
GR(p + q/2)

×GK(p + q/2−Q; p + q1 − q/2−Q). (50)

We replace GK by GR(−i/τ)FGA, with

Ftt′(x) =
1
2

∫
dp̂
4π
gK
tt′(p,x) (51)

and integrate over p in equation (50) to get ηRKtt′ (x) =
Ftt′(x). It can be easily shown that ηKA does not con-
tribute to the current; the (relevant part of the) vertex is
then found as

Γ 1
12(x;x1, x2) =

1√
2

∫
dηDη

t1−η/2,t−η/2(x1,x)

× Ft,t−η(x)δ(x1 − x2)δ(t2 − t1 + η). (52)

The last ingredient entering the expression of the interact-
ing self-energy is the electron-electron interaction prop-
agator V R,A. At the level of the approximation we are
working, it is sufficient to confine to the standard random
phase approximation (RPA). The retarded RPA screened
Coulomb interaction reads:

V R(x, x′) = V 0(x, x′)

−
∫

dx1dx2V
0(x, x1)ΠR(x1, x2)V R(x2, x

′), (53)

where

V 0(x, x′) = δ(t− t′)e2/|x− x′| (54)

and ΠR(x1, x2) is the retarded component of the den-
sity correlation function. We write the density correlation
function as the sum of a “static” and a “dynamic” part,
ΠR = Πs +Πd. The “static” part is given by

Πs(x1, x2) = 2N0δ(x1 − x2)δ(t1 − t2), (55)



P. Schwab and R. Raimondi: Coherent transport in disordered metals 531

���
���
���

���
���
���

��
��
��

��
��
��

�2 � (!2 + !3)=2
�1 � !1=2

�2 + (!2 + !3)=2

�1 � (!2 � !3)=2

�2 + (!2 + !3)=2
�1 + !1=2 �2 + (!2 � !3)=2

�2 � (!2 + !3)=2

Fig. 11. The dynamical part of the density correlation function.

as it is seen directly from the quasi-classical expression
for the electron density in equation (21). The “dynamic”
part is determined from the ladder diagrams as shown in
Figure 11. The expression is given by

Πd
tt′(x,x

′) = 2πiN0τ

∫
dε1
2π
· · · dω2

2π
e−iω1t+iω2t

′

×D
(
ε1 +

ω1

2
, ε1 −

ω1

2
; ε3 +

ω2

2
, ε2 −

ω2

2

)
×
[
F
(
ε3 +

ω2

2
, ε2 +

ω2

2

)
− F

(
ε3 −

ω2

2
, ε2 −

ω2

2

)]
,

(56)

where we suppressed the spatial indices. D(. . . ) is the
diffuson and F is the angular average over gK as de-
fined in (51). For the frequencies in F we introduce
the center-of-mass and relative coordinates, F (ε1, ε2) →
F(ε1+ε2)/2(ε1 − ε2). In order to evaluate the frequency in-
tegrals we assume that the time dependent distribution
function Fε(t) deviates from the equilibrium distribution
function only at small energies ε, i.e. Fε(t) → ±1 for
ε→ ±∞. We then find

Πd
t1t2(x1,x2) = 2N0τ

∂

∂t2
D0
t1t2(x1,x2). (57)

Since here the diffuson enters with the relative time η = 0,
the density correlation function does not depend on the
external fields. Adding the static and dynamic parts to-
gether and making use of the differential equation for the
diffuson, one finds

ΠR(x1, x2) = −2N0τD∂
2
x1
D0
t1t2(x1,x2). (58)

In the case of a uniform system this reduces to the stan-
dard expression

ΠR(q, ω) = 2N0
Dq2

−iω +Dq2
(59)

from which the dynamically screened Coulomb interaction
is determined as

V (q, ω) =
V 0(q)

1 + V 0(q)2N0Dq2/(−iω +Dq2)
(60)

≈ 1
2N0

−iω +Dq2

Dq2
· (61)

The second line is valid, when |ω| < V 0(q)2N0Dq
2. In

three dimensions, where V 0(q) = 4πe2/q2, this condition
reads |ω| < Dκ2. Since the inverse screening length κ is in
a metal typically of the order of the Fermi wavelength the

approximation is well justified. In lower dimensions a more
careful analysis is sometimes necessary, see for example
reference [27,18].

If we now collect all the pieces of our analysis we may
come back to the quantum correction to the current. For
convenience we switch from the energy/momentum do-
main to the time/space domain. Remember that we have
neglected the energy dependence of the Green function GR

andGA in the calculation of the Hikami box. This is equiv-
alent to approximate these Green functions as local in
time. The resulting time dependencies are shown in Fig-
ures 9 and 10. The correction to the current δj = δja+ δjb
is finally found as

δja(x, t) = −D∇δρ(x, t) (62)

δjb(x, t) = e2πDN0τ
2

∫
dηdx1dx2

×Ft−η,t(x)Dη
t−η/2,t1−η/2(x,x1)Ft1,t1−η(x1)

×V R
t1,t2(x1,x2)(−i∇x)D0

t2,t−η(x2,x) + c.c.

(63)

This current formula is one of the central results of our
paper. The nice feature is that is valid for arbitrary form
of the distribution function and diffuson propagator. This
will allow us to examine the current in different exper-
imental and geometrical setups as well as more general
questions concerning its physical interpretations. Specific
applications are discussed in Sections 4, 5. The interacting
disordered electron problem is often formulated in terms
of the field-theoretic non-linear sigma model and one may
wonder how the presented diagrammatic approach is re-
lated to it. To this end we explicitly show in the Ap-
pendix A at the end of the paper that the same expression
for the current can be obtained from the field theoretic ap-
proach of reference [28].

4 Gauge invariance

As a first application of the formula for the current we dis-
cuss in this section the issue of its physical interpretation
and of gauge invariance. To begin with, we believe useful
to make contact with our earlier work in references [18,19].

In references [18,19] the quantum correction to the cur-
rent was derived working in a vector gauge, A = −tE,
φ = 0, under the assumption that the electron dis-
tribution function had the equilibrium form, F (ε,x) =
tanh(ε/2T ), or, equivalently, in the time domain Ftt′(x) =
−iT/ sinh[πT (t−t′)], and that we dealt with a uniform sys-
tem with a homogeneous charge density. In this situation
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one has immediately that δja = 0 and by Fourier trans-
forming equation (63) with respect to the spatial variables,
the current formula of [18,19] is reproduced.

In [18,19] we showed that in the limit of weak elec-
tric field our theory reproduces the well-known Altshuler-
Aronov corrections to the conductivity. At larger fields
non-linear contributions to the current arise as a conse-
quence of the nonlocal character of the current formula.

By working in the vector gauge, the electric field enters
the equation for the diffuson, equation (30), via the mini-
mal substitution of the vector potential. Due to the quasi-
classical nature of the equation governing the diffuson,
one may interpret the non-linear conductivity in terms of
phases. Let us recall the argument of reference [19]. The
interaction correction to the conductivity is related to the
propagation of a particle and a hole along closed paths.
Pictorially one may think of this as one particle going
around a closed path, starting for example at t = 0 and
arriving at t = η. This particle is also interacting with a
background particle which is retracing backwards-in-time
the same closed path. Since the point of interaction x(t1)
can be anywhere along the path, the particles traverse the
loop at different times. In the presence of a vector poten-
tial the accumulated phase difference of the two paths is
ϕ1 − ϕ2 = e

∫ t1
t1−η dt′ẋ1 ·A − e

∫ η
0

dt′ẋ2 ·A. This can be
simplified using that x1(t) = x2(t) for 0 < t < t1 and
x1(t − η) = x2(t) for t1 < t < η leading to ϕ1 − ϕ2 =
e
∫ 0

t1−η dt′ẋ1 · [A(t′) −A(t′ + η)]. For the particular case
of a static electric field described by A = −Et, the above
given phase difference becomes ϕ1−ϕ2 = eη(x2−x1) ·E.
This suggests that the interaction correction should be
sensitive to a static electric field, leading to a non-linear
conductivity.

One may object against this interpretation by observ-
ing that the vector potential can be gauged away in such
a way that the static electric field is described by a static
scalar potential E(r) = −∇φ(r). A static scalar potential,
again according to equation (30), does no longer affect the
diffuson propagator, so that the argument of the phase dif-
ference along the two paths cannot be used. Of course this
does not imply that the current formula is incorrect.

In fact we may demonstrate explicitly the gauge in-
variance of the current formula. First one notices that
δja = −D∇ρ is gauge invariant. For δjb an explicit check
is necessary. Given the gauge transformation

A→ A +∇χ (64)
φ→ φ− ∂tχ (65)

the diffuson and the distribution function transform ac-
cording to

Ftt′(x) → Ftt′(x) exp {−ie [χ (x, t)− χ (x, t′)]} (66)
Dη
tt′(x,x

′)→ Dη
tt′(x,x

′) (67)

× exp
{
−ie
[
χ
(
x, t+

η

2

)
−χ

(
x, t− η

2

)]}
× exp

{
ie
[
χ
(
x′, t′+

η

2

)
−χ

(
x′, t′− η

2

)]}
·

By applying the above transformation to equation (63),
one easily verifies that the function χ(x, t) drops, so that
the expression is manifestly gauge invariant. For the spe-
cial example of a static electric field with A = −Et
we choose χ(x, t) = tE · x. After the gauge transforma-
tion the electric field appears in the distribution function
tanh(ε/2T )→ tanh[(ε − µx)/2T ], µx = eE · x but not in
the diffuson.

We conclude that although the correction to the cur-
rent as derived in this paper is gauge invariant, the inter-
pretation of the non-linear effects depends on the actual
choice of the potentials A or φ. With E = −∂tA, φ = 0
we would interpret the non-linear conductivity as due to
dephasing. With E = −∇φ, A = 0 the reason of the
non-linear conductivity is attributed to the different local
chemical potential felt by the particle and hole.

5 Mesoscopic wire

In this section we use the current formula to analyze the
non-linear electrical transport in a thin wire. We assume
that the temperature is low enough so that the Drude con-
ductivity is dominated by the impurity scattering and is
therefore temperature independent. It is well known that
in one dimension the electron-electron interaction leads
to a 1/

√
T correction to the conductivity. The interesting

question to ask concerns what happens at larger voltages
and which are the relevant length and energy scales in the
problem.

For the calculation we need the diffuson propagator
and the distribution function in the wire. At the boundary
with the vacuum or an insulator the derivative of the diffu-
son normal to the boundary vanishes, (n ·∇)D(x,x′) = 0.
In the case of an infinitely long wire with cross section S
the solution of the diffusion equation reads

D(x, t) =
1
τ

1
S

1√
4πDt

exp[−x2/(4Dt)]. (68)

In the above result we have averaged the diffuson over the
cross section. In a wire of finite length we impose the open
boundary conditions along the x axis

Dtt′(x, x′)
∣∣
x,x′=0,L

= 0, (69)

corresponding to the fact that an electron arriving at the
boundary escapes into the leads, where dissipation takes
place. Therefore it no longer contributes to the phase co-
herent process of quantum interference. The diffuson in
the finite system is related to the propagator for an infi-
nite system according to

Dtt′(x, x′) =
∞∑

n=−∞

[
D(x− x′ + 2nL, t− t′)

−D(x+ x′ + 2nL, t− t′)
]
. (70)
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For the actual calculations it is convenient to consider also
the product of the retarded interaction and the diffuson,

(V RD)tt′(x,x′) =
∫

dx1dt1V R
tt1(x,x1)D0

t1t′(x1,x′).

(71)

For the case of long range interaction this product solves
the equation[
−D∇2

x

] (
V RD

)
tt′

(x,x′) =
1

2N0τ
δ(x− x′)δ(t− t′),

(72)

as it may be seen by comparing with equation (61). For a
one dimensional wire with open boundary conditions we
obtain then

(V RD)tt′(x, x′) =
[

(L− x′)x
L

− (x− x′)Θ(x− x′)
]

× 1
2DN0τ

δ(t− t′). (73)

Besides the boundary conditions for the diffuson and the
interaction we need the boundary condition for the distri-
bution function. We assume that the leads of the wire are
in thermal equilibrium, so that the distribution function
is given by

F (ε,x)
∣∣
x=0,L

= tanh
(
ε± eV/2

2T

)
· (74)

The distribution function inside a mesoscopic wire has
been investigated both experimentally [20] and theoret-
ically [29,30]. In the theoretical analysis, in particular, a
solution of the Boltzmann equation in the presence of dis-
order, electron-electron interaction and electron-phonon
interaction has been given. Here we borrow the approxi-
mate solutions for the the distribution function found in
references [29,30].

The form of the distribution function depends on the
various relaxation mechanisms governing the collision in-
tegral. In the following we first consider a long wire,
L � Lph, and then subsequently reduce the length to
Lph � L � Lin and Lin � L � LT. Here we indicate
with Lph, Lin, and LT the electron-phonon, the inelastic
and the thermal scattering lengths.

5.1 Long wire

In the case of a long wire, L � Lph � Lin, the electrons
which traverse the wire scatter many times inelastically
and exchange energy with the environment, for example
with the phonons. As a result the distribution function
acquires the equilibrium form with a local chemical po-
tential and temperature. Our ansatz for the distribution
function is

F (ε, x) = tanh
(
ε+ eV (L− 2x)/2L

2Te(x)

)
· (75)

We assume that the temperature is constant in the bulk
of the wire, and we also neglect the region near the leads
where the electron temperature increases from the value in
the leads to the one in the bulk. The electron temperature
in the bulk may be estimated with standard energy bal-
ance arguments [16,13]. For a stationary temperature Te,
the Joule heating power Pin = σE2 equals the power which
is transferred into the phonon system, Pout. For weak heat-
ing, one has Pout = cV∆T/τph, where cV is the electron
specific heat. One obtains then that the difference of elec-
tron and phonon temperature may be estimated as

∆T ≈ 3
π2
D(eV/L)2τph/T. (76)

For strong heating, on the other hand, the effective elec-
tron temperature is of the order of the voltage drop over
a phonon length

Te ∼ eV Lph/L. (77)

We are now ready to evaluate the quantum correction
to the current in the wire as

I =
1
L
S

∫ L

0

dxjx(x), (78)

where jx is the component of the current parallel to the
wire. Recall that we separated the correction to the cur-
rent density into two contributions δj = δja+δjb. The first
of the two terms does not contribute to the correction to
the current since∫ L

0

dxδja ∝
∫ L

0

dx
∂

∂x
δgK(x) (79)

= δgK(L)− δgK(0) (80)

and the boundary conditions impose that δgK vanishes on
the leads. The correction to the current then reads

I =
2πeτ
L

∫ L

0

dxdx1

∫
dηRe

{
Ft−η,t(x)Ft−η,t−2η(x1)

× Dη
t−η/2,t−3η/2(x, x1)(−i)

[
Θ(x1 − x)− x1

L

]}
· (81)

It is useful to introduce the center-of-mass and relative co-
ordinate R = (x+x1)/2, r = x1−x. The last term in equa-
tion (81) above becomes thenΘ(r)−R/L−r/2L. The term
R/L vanishes upon integration due to the antisymmetry
of the r-integral. The assumption that the thermal length
is much shorter than the system size allows furthermore to
approximateΘ(r)−r/2L byΘ(r), to neglect the boundary
effect on the diffuson, i.e. Dη

t−η/2,t−3η/2(x, x1) ≈ D(r, η),
and to extend the r-integration to infinity. By inserting
the distribution function we arrive at

δI = −2πeτ
∫ ∞

0

dr
∫ ∞

0

dη
(

Te

sinh(πTeη)

)2

×D(r, η) sin(eV rη/L). (82)
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This is equivalent to what is obtained in reference [18]. In
the limit of low voltage the current becomes

δI(V ) ≈ e2

π2

√
D/Te

L
V

(
−4.92 + 0.21

D(eV/L)2

T 3
e

+ · · ·
)
,

(83)

where 4.92 and 0.21 are approximate numerical factors.
In order to obtain the full current, one has to add
the contribution of the Drude leading term, i.e., I =
2e2DN0SV/L + δI. The low voltage expansion applies
when the voltage drop over a thermal length is smaller
than the temperature, eV LT/L < Te. Since we have as-
sumed that Lph � LT, the electron temperature as a func-
tion of voltage rises so fast that the condition always holds.
Finally we compare the heating and non-heating contri-
bution to the non-linear conductivity at low voltage. By
taking the linear conductivity and the increase in tem-
perature due to low voltages from equation (76), we find
the heating contribution to the cubic term in the current
voltage characteristics in the form

δIheating ≈ 4.92
e2

π2

LT

L
V

3
2π2

D(eV/L)2

T 2(1/τph)
· (84)

This has to be compared with the corresponding non-
heating cubic contribution

δInon−heating ≈ 0.21
e2

π2

LT

L
V
D(eV/L)2

T 3
· (85)

One observes that the heating contribution is by a fac-
tor of the order of Tτph larger than the non-heating
contribution.

5.2 Intermediate length

Now we consider a wire of intermediate length where
Lph � L � Lin. One still expects to be near local equi-
librium although the main mechanism which carries the
energy out of the wire is not due to the phonons, but to
the heat flow out of the wire. Under these conditions, a
temperature profile over the wire develops. The local tem-
perature satisfies the equation [31]

d2

dx2
T 2

e (x) = − 6
π2

(eV )2

L2
(86)

which is solved by

T 2
e (x) = T 2 +

3
π2

(
eV

L

)2

x(L− x). (87)

The correction to the current at a point x probes the
wire in a region ∼LT around x. As a consequence, non-
linearities in the I − V characteristics arise because (1)
the temperature depends on the voltage (“heating”), and
of (2) the non-local character of the current formula
(“non-heating”). It turns out that the first effect domi-
nates, whereas the non-heating contribution to the non-
linear conductivity is only a small perturbation. For il-
lustration, notice that the heating becomes strong at

L=LT = 200

L=LT = 5

eV=kT
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Fig. 12. Interaction correction to the conductance I/V for a
mesoscopic wire as a function of voltage. I/V is plotted in
units of (e2/~)LT/L. The full line corresponds to the non-
equilibrium distribution function (89). The long dashed line
corresponds to the local equilibrium distribution function (75)
with the x-dependent temperature. The short dashed line
(L/LT = 5) is the non-linear conductivity due to the heat-
ing contribution only, equation (88).

eV ∼ kT . Non-heating non-linearities, on the other
hand, arise on the scale eV LT/L ∼ kT . Since we as-
sume that L � LT, heating is indeed dominant. This is
also demonstrated in Figure 12 where we plot the con-
ductance δG = δI/V as a function of voltage, while
varying the system size, L/LT, and the distribution func-
tion Ftt′(x). For large L/LT the linear conductance ap-
proaches δI/V ≈ −(4.92e2/π2)(LT/L)V . For the smaller
system size L/LT = 5, the linear conductance is sup-
pressed, due to the chosen boundary conditions. The long
dashed lines and the full lines correspond to the local equi-
librium distribution (75), and to the non-equilibrium dis-
tribution discussed below, respectively. The short dashed
line (L/LT = 5), instead, is obtained by taking into ac-
count only the heating contribution, i.e. by calculating
from equation (81) the linear conductivity and averaging
over the x-dependent temperature,

δIheating =
1
L

∫ L

0

dxδσ(T (x))(V/L). (88)

One observes in Figure 12 that the “heating” contribu-
tion reproduces with a good accuracy the much more
complicated full calculation. For the longer system with
L/LT = 200, we do not plot the “heating” curve, be-
cause in this case it is practically indistinguishable from
the long dashed one. A slightly larger non-linear conduc-
tivity is found in the non-equilibrium situation as it will
be discussed in the next section.

5.3 Short wire

In a very short wire the inelastic length may exceed the
system size L. When one neglects the inelastic scattering,
the distribution function inside the wire becomes a linear
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superposition of the distribution functions in the leads and
reads [21]

F (ε, x) = [(L− x)F (ε, 0) + xF (ε, L)] /L. (89)

In the limit L� LT the analytic calculation of the current
proceeds as in the case of Section 5.1. In analogy to (82)
we arrive at

δI = −2πeτ
∫ ∞

0

dr
∫ ∞

0

dη
(

T

sinh(πTη)

)2

×D(r, η) sin(eV η)r/L. (90)

The numerical results for the current-voltage character-
istics in the presence of such a distribution function are
shown in Figure 12. Notice that we integrated numerically
equation (81), as it is appropriate when LT/L is not very
large. The linear conductance is – of course – the same as
in the local equilibrium situation, whereas the non-linear
effects are slightly larger.

5.4 The Spin-triplet channel

Up to now we have neglected all the spin effects. As
demonstrated in Appendix B, the current formula can eas-
ily be generalized in order to include also the so called spin
triplet channels. The general equation for the correction
to the current is given in the appendix. With the two-step
distribution function (89) and for L � LT the equation
for the current reads

δjb = −4πeDN0τ
2

3∑
i=0

∫ ∞
−∞

dr
∫ ∞

0

dη
∫ η

0

dt1

×
(

T

sinh(πTη)

)2

sin(eV η)
r

L

×D(r, t1)
∂

∂r
(γ̃iD)(r, η − t1), (91)

with

(γ̃iD)(r, t) =
γi

τ

√
1− 2γi
4πDt

exp
[
−r2(1− 2γi)/4Dt

]
,

(92)

and γi are the interaction amplitudes in the spin singlet
(γ0 = 1/2) and spin triplet (γ1,2,3 = γt) channels. In the
low voltage limit this expression reproduces the standard
result for the linear conductivity,

δσ = −4.92
e2

π2

LT

L

[
1− 3(

√
1− 2γt − 1 + γt)/γt

]
. (93)

Figure 13 depicts the current voltage characteristics for
different strengths of the triplet scattering amplitude.
Again we compare the full result (91) with the sim-
ple heating contribution, that is the average of the lin-
ear conductivity over the temperature profile given in
(87). For strong scattering in the triplet channel the
quantum correction changes sign. As a function of voltage,
the quantum corrections are suppressed. For the case of a
distribution function out of equilibrium, the non-heating
non-linear contributions are stronger than the pure heat-
ing effects.

Fig. 13. Correction to the conductance as a function of volt-
age. Notice that for a strong negative scattering amplitude in
the spin triplet channel, γt, the quantum correction changes
sign. The dashed line corresponds to the hot electron regime
(heating), while the full line to the non-equilibrium situation.

6 Conclusions

We have calculated the interaction correction to the elec-
trical current for a disordered metal out of equilibrium.
The current is expressed as a function of the (ensemble
averaged) distribution function and the diffusion propa-
gators. In order to obtain this result we have extended
the diagrammatic approach of references [18,19]. We have
first demonstrated explicitly the gauge invariance of our
current formula for the current density. In particular, we
have discussed how the physical interpretation of the non-
linear contribution may be described differently depend-
ing on the gauge choice made. In the scalar gauge one
may think as the particle-hole pair lying on a different
chemical potential. In the vector gauge, the chemical po-
tential of the particle and hole are equal. In the latter case
an argument based on phase differences leads to the con-
clusion that the electric field affects the correction to the
conductivity.

We have successively discussed in some detail the cor-
rection for a mesoscopic wire. We have assumed that the
wire is attached to “ideal leads” (infinite conductance),
which are described by means of boundary conditions for
the distribution function and the diffusion propagator. We
have distinguished three different regimes. First we con-
centrated on a wire near local equilibrium, with a constant
electron temperature. Besides heating, there is a contri-
bution to the non-linear conductivity due to the nonlocal
nature of the current response.

For short wires, where the electron-phonon length is
longer than the system size, we found that the conduc-
tance scales with voltage over temperature. The quanti-
tative shape of the “scaling curve” is not universal. We
have found two different curves in the hot electron regime,
where the inelastic scattering length is shorter than the
system size, and in non-equilibrium. The scaling of the
voltage with the temperature has been recently observed
in a nanobridge [32]. Notice however that for a quantita-
tive explanation of that experiment it might be important
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to take into account scattering of the electrons at the in-
terface between the leads and the bridge [32] or charging
effects [33].

We come now back to the question concerning the ori-
gin of the saturation of the dephasing time and resistance
in gold wires which originally motivated our investiga-
tions. We have shown that the non-linear conductivity for
a wire near local equilibrium is dominated by heating, even
in the case of a space dependent temperature. In the case
of full non-equilibrium (double step distribution function)
one finds only slightly enhanced non-linear effects. We
have to conclude that a saturation of the Altshuler-Aronov
correction due to non-equilibrium electric fields is most
probably due to heating.

We would like finally to emphasize that in this pa-
per we have concentrated on the quantum correction to
the (ensemble averaged) current, and we have left aside
a derivation of the charge density and the kinetic equa-
tion including the quantum corrections. This latter task
implies the evaluation of the quantum correction to the
distribution function. The evaluation of the distribution
function and charge density are directly connected as it is
clear when one expresses the distribution function in terms
of the quasi-classical Green functions as gK = gRF−FgA,
and recalls the relation of gK with the charge density. The
inclusion of quantum corrections into the kinetic equa-
tion for disordered electrons have been considered for the
weak localization case without electron interaction in ref-
erences [35,36], and in the presence of interactions in refer-
ence [37]. In the latter work, the non-linear electric field ef-
fects have not been included. We notice that the quantum
correction to the charge density out of equilibrium can be
derived following the procedure described in this paper
for the current density in Section 3. This task is however
more involved for the following reason. Within the leading
order in the gradient expansion, one finds from δΣimp,K,
in analogy to equation (38), the identity δρa = δρ. The
diagrams in Figure 9, responsible for the contribution to
the current denominated δjb, give in the case of the charge
density δρb = 0. This happens because, the evaluation of
the Hikami box with the density vertex is zero in the lead-
ing order of the gradient expansion. In order to consider
the next-to-leading terms, one has to take into account
higher powers in the inverse of εFτ and ql. This requires
the evaluation of also the diagrams with only one vertex, Γ
or Γ̃ , renormalized by the diffusion pole. Therefore the full
expression of the electron self-energy is considerably more
complicated and such a calculation will be more lengthy
than the one we presented here for the current density.
This task, although worth to be done, is beyond the scope
of the present paper.

We acknowledge many discussions with C. Castellani. This
work was supported by the DFG through SFB 484 and
Forschergruppe HO 955. R.R. acknowledges partial financial
support from EU under Grant number RTN 1-1999-00406.

Appendix A: Field theoretic approach:
the non-linear sigma model

The field theoretic formulation of the interacting, disor-
dered electron system was pioneered by Finkelstein in the
80’s [34]. Recently, this formulation has been extended
to the non-equilibrium case by means of the Keldysh
technique by Kamenev and Andreev [28] and Chamon
et al. [38] for the case of normal-conducting metals and
by Feigel’man, Larkin and Skvortsov [39] for supercon-
ductors. Gutman and Gefen [23] have also used the field
theoretic description to calculate the current and zero fre-
quency shot noise.

Given the already extensive literature available on the
subject, we believe that, rather than repeating again the
derivation of the non-linear sigma model, it is perhaps
more useful, instead, to show how to obtain our current
formula (63) within the non-linear sigma model. In this
appendix we will discuss the spinless version of the model,
following reference [28], postponing the spin effects to the
following appendix. In the absence of the electron interac-
tion, the action of the non-linear sigma model is given by

iS0 = −πN0

4
[
DTr(∂xQ)2 + 4iTrεQ

]
, (94)

where the so-called long derivative ∂x is defined by

∂xQ = ∇Q+ ie[A, Q]. (95)

The field Q ≡ Qijtt′(x) must satisfy the constraints Q2 = 1
and TrQ = 0. The electron interaction is described by the
following term in the action

iS1 = −iπN0TrΦαγαQ, (96)

with γ1 = σ0 and γ2 = σx. The fluctuations of the field Φ
are related to the statically screened Coulomb interaction
and given by

−i〈Φi(x, t)Φj(x′, t′)〉 =
1
2
V σijx δ(x− x′)δ(t− t′). (97)

In the case of long range Coulomb forces one finds V =
1/N0. Since Φ couples only linearly to Q it can be inte-
grated out:

〈e−iπN0TrΦαγ
αQ〉Φ =

exp
[
− iV (πN0)2

2

∫
dxdtTr(γ1Qtt(x))Tr(γ2Qtt(x))

]
.

(98)

Here the trace refers to the Keldysh space. The appear-
ance of the product of terms containing γ1 and γ2 stems
from the σx structure of the interaction matrix in Keldysh
space. In order to make contact with the diagrammatic
approach, we express the Green functions in terms of the
Q-fields. First we observe that [28]

Ĝtt′(x,x′) =

〈[
G−1

0 +
i

2τ
Q+ Φαγ

α

]−1
〉
Q,Φ

, (99)
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where the brackets 〈. . . 〉Q,Φ indicate that one has to av-
erage over the fields Q and Φ. For the sake of simplicity,
we drop the subscripts Q, Φ in the following. By using the
condition that the fields Q and Φ are only slowly vary-
ing in space and time, one finds a relation between the
ξ-integrated Green function and the Q-matrix. In partic-
ular, upon taking the s-wave component of both, one finds∫

dp̂
4π
ĝtt′(p̂,x) =

〈
Q̂tt′(x)

〉
· (100)

In a similar way the p-wave part of the ξ-integrated Green
function is related to Q by

vF

∫
dp̂
4π

p̂ĝεε′(p̂,x) =
1
2
D〈∂xQQ−Q∂xQ〉, (101)

so that the current density reads

j =
1
2
eπDN0

〈
(∂xQQ−Q∂xQ)12

〉
· (102)

At a first glance, this might differ from what is found
following reference [28], where the current density is writ-
ten as

j =
1
2
eπDN0

〈
Trγ2(∂xQQ−Q∂xQ)

〉
· (103)

On the other hand, by comparing with the expres-
sion (101) for the Green function, it is seen that equa-
tion (103) sums the Keldysh component and the (21)-
component of the Green function, whereas (102) takes
only the Keldysh component. Since the (21)-component
is zero the two expressions are equivalent.

A.1 Propagators

The saddle point approximation for the Q-field

Qsp =
(

1 2F
0 −1

)
(104)

reproduces the Drude-Boltzmann theory. The quantum
corrections are found when considering the fluctuations
about the saddle point. We parameterize Q according to

Q = ue−W/2σzeW/2u (105)

where u characterizes the saddle-point distribution
function

u =
(

1 F
0 −1

)
, Qsp = uσzu, (106)

and W parameterizes the fluctuations,

W =
(

0 w
w̄ 0

)
. (107)

By expanding in powers of the W -field, one finds for the
non-interacting action, S0, up to the quadratic order

iS(2)
0 = −πN0

2

{∫
dxdt1dt2wt1t2

(
∂t1 + ∂t2 +D∂2

x

)
w̄t2t1

+
∫

dxdt1 · · ·dt′2w̄t1t2(∂xFt2t′2)w̄t′2t′1(∂xFt′1t1)
}
· (108)

The long derivative ∂xw̄ = ∇w̄ + ie[A, w] can here also
be written as ∂x = ∇ − ieAt1(x) + ieAt2(x). The 〈ωω̄〉
correlations solve the differential equation(
− ∂

∂t1
− ∂

∂t2
+D∂2

x

)
〈wt2t1(x)w̄t3t4(x′)〉 =

2
πN0

δ(x− x′)δ(t1 − t3)δ(t2 − t4). (109)

After introducing the relative times η = t2−t1, η′ = t4−t3
and the center-of-mass times, t = (t1 + t2)/2, t′ = (t3 +
t4)/2, we identify this correlator with the diffuson,

〈wt2t1(x)w̄t3t4(x′)〉 = − 2τ
πN0

Dη
tt′(x,x

′)δ(η − η′), (110)

as it may be seen by comparing with equation (30). Notice
that the relative time η is conserved during the propaga-
tion so that η = η′. The 〈w̄w〉 correlator is the advanced
counterpart of the diffuson. 〈w̄w̄〉 = 0 since there is no
term proportional to ww in the action. Finally the 〈ww〉
correlator is given by

〈wt2t1wt3t4〉 = −πN0

∫
dt′1 . . .dt

′
4〈wt2t1w̄t′1t′2〉〈w̄t′4t′3wt3t4〉

×∂xFt′2t′4∂xFt′3t′1 . (111)

This correlator is zero in equilibrium, when ∂xF = 0. Elec-
tron interactions modify these propagators. By expanding
in (98) each Q-field to first order in W , the interacting
part of the action becomes

= −i(πN0)2 1
2
V

∫
dt(w̄F − Fw̄)tt(w̄ − w − Fw̄F )tt,

(112)

which leads to non-trivial modifications of all the 〈ww〉
correlators. Only 〈ω̄ω̄〉 is not modified by the interaction
and remains zero. We consider now 〈ww̄〉, which in the
absence of interaction is just the diffuson. We find(
− ∂

∂t1
− ∂

∂t2
+D∂2

x

)
〈wt2t1w̄t3t4〉Φ

+ iπN0V Ft2t1 (〈wt2t2w̄t3t4〉Φ − 〈wt1t1w̄t3t4〉Φ) =
2

πN0
δ(x− x′)δ(t1 − t3)δ(t2 − t4). (113)

To understand the meaning of the above equation, let us
consider first the limit t2 → t1. The interaction depen-
dent term does not drop from (113) since the distribution
function is singular in this limit, Ft2t1 ≈ −i/π(t2 − t1).
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Upon using this relation we arrive at the following simple
diffusion equation[
−(1−N0V )

∂

∂t
+D∂2

x

]
〈wttw̄t3t4〉Φ =

2
πN0

δ(x− x′)δ(t− t3)δ(t− t4). (114)

To make contact with the diagrammatic calculation, we
identify this correlation function with the product of the
retarded interaction and diffusion propagators which have
been defined in equation (71)

−π
2
N0V

2
〈wttw̄t3t4〉Φ = (V RD)tt3δ(t3 − t4). (115)

The propagator with four different time arguments is fi-
nally given by

〈wt2t1w̄t3t4〉Φ = 〈wt2t1w̄t3t4〉 − iπN0V

∫
dx′dt′3dt′4

×
[
〈wt2t1w̄t′3t′4〉Ft′4t′3

(
〈wt′4t′4w̄t3t4〉Φ − 〈wt′3t′3w̄t3t4〉Φ

)]
.

(116)

A.2 Correction to the current

Due to the fluctuations of Q there are corrections to the
charge and current density. Here we calculate these cor-
rections by taking into account the Gaussian fluctuations.
In the derivation, we parallel the lines of the diagram-
matic approach. We begin by separating the correction to
the current in two contributions δj = δja + δjb, where δja
is related to the gradient of the charge density. We then
proceed by expressing δjb in terms of the fields ω̄ and
ω. In the third step we will then explicitly include the
interaction and obtain the current formula. By writing
Q = Qsp + δQ, the correction to the current reads

δj(x, t) = −eπDN0

2
〈Trγ2 {Qsp∂xδQ+ δQ∂xQ

sp

+δQ∂xδQ− · · · }〉· (117)

The dots correspond to the terms which appear due to
(∂xQ)Q. The term ja is proportional to the gradient of
the charge density

δja(x, t) = −eπDN0∇〈δQ12
tt (x)〉 (118)

= −D∇δρ(x, t) (119)

and we do not calculate it explicitly here. The second
term, δjb, contains all other contributions. By collecting
the various summands, one gets

δjb = 2F∂x〈δQ22〉+ 〈δQ11〉∂x(2F )
+〈δQ11∂xδQ

12〉+ 〈δQ12∂xδQ
22〉 − · · · (120)

Now we expand Q in powers of W and we arrive at

δjb = eπDN0 [F 〈(∂xw̄)w〉Φ + 〈w(∂xw̄)〉ΦF ] (121)
= 2πeDN0Re (〈w∂xw̄〉ΦF ) . (122)

In the absence of interactions δjb vanishes, so that taking
the interactions into account is essential. Inserting 〈ww̄〉Φ
from equation (116) we find

δjb = 4πeDN0τ
2

∫
dηdx1dx2Re

{
Ft−η,t(x)

×Dη
t−η/2,t1−η/2(x,x1)Ft1,t1−η(x1)

×V R
t1t2(x1,x2)(−i∇x)D0

t2,t−η(x2,x)
}
, (123)

which is identical to what we obtained in equation (62).
Notice that the long derivative in the current for-

mula (122) reduces to the gradient in the final result. This
happens since the two time indices in the relevant ω̄ field
are always equal, 〈wttw̄t3t4〉Φ ∝ δ(t3 − t4).

Appendix B: Spin-Triplet channel

Until now we have neglected the spin effects. These arise
from the fact that the diffusion is described by the particle-
hole propagator, which may occurs in four spin states de-
pending on the relative spin of the particle and hole. In
the case of Coulomb long range forces, the most singular
contribution comes from the singlet channel that we have
discussed throughout the paper. In addition to the sin-
glet channel, there are three triplet channels which also
contribute to the quantum corrections to the current. In
this appendix we extend our work (see reference [19]) to
a non-equilibrium situation.

In order to take into account the spin-dependent
interactions, we follow references [34,38] and start from
an interaction which is local in space and time. The
fermionic action is of the type

iSee = − i
2N0

Tr
{
Γ Ψ̄sΨ̄s′Ψs′Ψs − Γ2Ψ̄sΨ̄s′ΨsΨs′

}
, (124)

where Γ and Γ2 are dimensionless static scattering
amplitudes, and Ψs is an operator for a Fermion with
spin s. The trace includes integration over space and time
contour, as well as summation over spin. The interaction
can be written in terms of the charge and spin densities,

iSee = − i
2N0

Tr
{(

Γ − Γ2

2

)
ρρ− Γ2

2
s · s

}
, (125)

with ρ =
∑
s Ψ̄sΨs and si =

∑
ss′ Ψ̄sσ

i
ss′Ψs′ . At this point

it becomes convenient to introduce the interaction ampli-
tudes in the charge (singlet) channel, Γ s = Γ − Γ2/2 and
in the spin (triplet) channel, Γ t = −Γ2/2. Then we de-
couple the interaction with the fields (Φ,B) for the charge
and spin. By going through the steps of the derivation of
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the σ-model one finds the following modifications of the
action

iS0 → −
πN0

4
[DTr∂xQss′∂xQs′s + 4iTrZεQss] (126)

iS1 → −iπN0Tr [(Φαδss′ + Bα · σss′)γαQs′s] , (127)

with

−i〈φαφβ〉 =
1
2
Γs
N0

σxαβ (128)

−i〈BiαB
j
β〉 =

1
2
Γt
N0

σxαβδij . (129)

In (126) we introduced the factor Z which arises in the
renormalization of the σ-model [34]. One observes that Z
can be absorbed in a redefinition of the interaction ampli-
tudes, the quasi-particle diffusion constant, and the quasi-
particle density of states according to

Γ s,t → γs,t = Γ s,t/Z (130)
D → Dqp = D/Z (131)
N0 → Nqp = N0Z. (132)

We are now ready to consider the fluctuations. In analogy
to what has been done in the spinless case, we introduce
the charge and spin components of the fields w and w̄,

wss′ =
1√
2

3∑
i=0

wiσiss′ (133)

wi =
1√
2

∑
ss′

wss′σ
i
ss′ (134)

where σ0
ss′ = δss′ and σiss′ for i = 1, 2, 3 are the usual

Pauli matrices. In the quadratic fluctuations of the non-
interacting action, S0, the spin and charge terms decou-
ple, since the structure is of the type

∑
w̄ss′(. . . )ws′s =∑

i w̄
i(. . . )wi. The coupling term iS1 is to first order in W

given by

iS1 = −iπN0

√
2
∑
i

Tr
{
Biαγ

αu

(
0 wi

−w̄i 0

)
u

}
+ · · ·

(135)

where for brevity we denoted the scalar field Φ by B0. We
assume that the saddle point, i.e. the distribution function
and therefore the matrix u, does not depend on spin. The
interaction field, Φ, is easily integrated out, with the result
that at the level of the quadratic fluctuations, the spin and
charge contributions are decoupled even in the presence of
the interaction.

The correction to the current is finally found as

δjb = eπDN0

3∑
i=0

Re〈wi∇xw̄
i〉ΦF (136)

= 4πeDqpτ
2

3∑
i=0

∫
dηdx1dx2Re

{
Ft−η,t(x)

×Di,η
t−η/2,t1−η/2(x,x1)Ft1,t1−η(x1)

× γ̃it1t2(x1,x2)(−i∇x)Di,η′=0
t2,t−η(x2,x)

}
, (137)

where again i = 0 corresponds to the charge and i = 1, 2, 3
correspond to spin channels. Di,η

tt′ (x,x
′) is the quasi-

particle diffusion propagator in the relevant spin or charge
channel, which obeys the differential equation given in
equation (30), with the only difference that the diffusion
constant D is replaced by the quasi-particle diffusion con-
stant Dqp. γ̃i is the dynamically screened interaction,

γ̃i(q, ω) = γi[1 + γiΠd/Nqp]−1 (138)

= γi
−iω +Dqpq

2

−i(1− 2γi)ω +Dqpq2
· (139)

For the explicit calculations it is convenient to consider
the product of the dynamically screened interaction and
the retarded diffuson,

(γ̃iDi)tt′(x,x′) =
∫

dx1γ̃
i
tt1(x,x1)Di,η=0

t1,t′
(x1,x′) (140)

which solves the diffusion equation

[
(1−2γi)∂t−D∇2

x

]
(γ̃iDi)tt′(x,x′)=

γi

τ
δ(x−x′)δ(t− t′).

(141)
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